Zero-TPrune: Zero-Shot Token Pruning through Leveraging of the Attention Graph in Pre-trained Transformers

Presenter: Hongjie Wang Advisor: Prof. Niraj K. Jha Department of Electrical & Computer Engineering Princeton University

The Era of Artificial Intelligence

Text to text: ChatGPT, Bard, Jasper ...

Text/Image to image: DALL-E, DeepAI, MidJourney ... **Text to speech:** VITS, Genny, Diffsinger...

Increasing Size of Transformers

https://blogs.nvidia.com/blog/2022/03 /25/what-is-a-transformer-model/

Challenge: Expensive Inference with Transformers

- Example: ChatGPT
- Inference: At least 8 Nvidia Tesla A100 GPUs needed (~\$20,000/GPU)
- Electricity usage: \$0.01-0.1 per query, \$1-3 million in its first five days when opened to public

We want to prune Transformers!

Estimated by Nathan Baschez @ Twitter

Transformer Pruning Methods

Dedicated design

Child et al., arXiv, 2019 Yin et al., *CVPR*, 2022

- Easy to be fully utilized by hardware
 - Universal for various backbones

Pruning Requires Re-Training

Most existing methods: expensive re-training \blacklozenge is required for each configuration

Overview

• Our methodology the first to consider both importance and similarity of tokens in performing token pruning

Closer Look at the Transformer Block

- For each head, the attention probability between tokens: elements in matrix $A^{(h,l)}$
- A^(h,l): adjacency matrix of a complete, weighted, directed graph with hundreds of nodes

Utilize the information in this graph to select unimportant tokens (nodes)!

Weighted Page Rank (WPR) Algorithm

- Vanilla Page Rank algorithm: links between web pages unweighted
- Consider adjacency matrix A^(h,l) as a graph operator, and apply it to the uniformly initialized graph signal iteratively until convergence

$$s^{(l)}(\mathbf{x}_{i}) = \frac{1}{N_{h}} \frac{1}{n} \sum_{h=1}^{N_{h}} \sum_{j=1}^{n} \mathbf{A}^{(h,l)}(\mathbf{x}_{i}, \mathbf{x}_{j}) \cdot \mathbf{s}^{(l)}(\mathbf{x}_{j})$$

Require: N > 0 is the number of nodes in the graph; $A \in$ $\mathbb{R}^{N \times N}$ is the adjacency matrix of this graph; $s \in \mathbb{R}^N$ represents the graph signal **Ensure:** $s \in \mathbb{R}^N$ represents the importance score of nodes in the graph $s^0 \leftarrow \frac{1}{N} \times e_N$ ▷ Initialize the graph signal uniformly $t \leftarrow 0$ while $(|s^{t} - s^{t-1}| > \epsilon)$ or (t = 0) do ▷ Continue iterating if not converged $t \leftarrow t+1$ $s^t \leftarrow A^T \times s^{t-1}$ \triangleright Use the adjacency matrix as a graph shift operator end while $s \leftarrow s^t$

Overview

• Our methodology the first to consider both importance and similarity of tokens in performing token pruning

Are Important Tokens Really Necessary?

Once some important tokens are selected, some other important tokens are no longer necessary!

Importance-Guided Group Matching

Visual Examples

Comparison Experiment Setup

- Pre-trained Transformer backbones:
 - DeiT [1], MAE [2], AugReg [3], SWAG [4], LV-ViT[5], T2T-ViT[6]
- Task: Image classification
- Dataset: ImageNet, 224px images (if not specified)
- Baselines:
 - Fine-tuning required methods: DynamicViT [7], A-ViT [8]
 - Off-the-shelf methods: ATS [9], ToMe [10]

[1] Touvron et al., *ICML*, 2021
[2] He et al., *CVPR*, 2022
[3] Steiner et al., *TMLR*, 2022
[4] Singh et al., *CVPR*, 2022

[5] Jiang et al., *NeurIPS*, 2021
[6] Yuan et al., *ICCV*, 2021
[7]Rao et al., *NeurIPS*, 2021
[8] Yin et al., *CVPR*, 2022

[9] Fayyaz et al., *ECCV*, 2022 [10] Bolya et al., *ICML*, 2023

Comparisons with Methods that Require Fine-tuning

Comparisons with Off-the-shelf Methods: DeiT-S

 Compared to state-of-the-art, Zero-TPrune reduces accuracy loss by 33%

Method A	Acc@top1	GFLOPS	Throughput(img/s)
DeiT-S 7	79.8%	4.55	1505.9
+ ATS 7	79.2% (-0.6%)	3.00 (-33.4%)	2062.3 (+36.9%)
+ ToMe 7	78.9% (-0.9%)	2.95 (-35.2%)	2263.9 (+50.3%)
+ Zero-TP-a 7	79.4% (-0.4%)	2.97 (-34.7%)	2188.4 (+45.3%)
+ Zero-TP-b 7	79.1% (-0.7%)	2.50 (-45.1%)	2458.4 (+63.2%)

Comparisons with Off-the-shelf Methods: Medium Models

Method	Acc@top1	GFLOPS	Method	Acc@top1	GFLOPS
AugReg	81.41%	4.55	MAE	83.62%	55.4
+ ATS	79.21%	2.80	+ATS	82.07%	42.3
+ ToMe	79.30%	2.78	+ToMe	82.69%	42.2
+ Zero-TP	80.22%	2.79	+Zero-TP	82.93%	42.3
LV-ViT-S	83.3%	6.6	SWAG	85.30%	55.6
+ ATS	80.4%	3.5	+ATS	84.21%	43.8
+ ToMe	79.8%	3.6	+ToMe	85.09%	43.8
+ Zero-TP	81.5%	3.5	+Zero-TP	85.17%	43.8

* WAG models perform inference on 384px images

Conclusions

- Zero-TPrune: the first zero-shot token pruning method that exploits both the importance and similarity of tokens
- Attention matrix → attention graph: Weighted Page Rank reduces noise from unimportant tokens during importance assignment
- Guided by importance: similarity-based matching and pruning are more precise
- Zero-TPrune can increase the throughput of off-the-shelf pre-trained Transformers by 45% with only 0.4% accuracy loss
- Compared with state-of-the-art methods, Zero-TPrune reduces accuracy loss by more than 30%

Future Work

- The prevailing "pretraining → downstream tasks" pattern naturally offers the potential to perform zero-shot pruning
- More tasks: segmentation, reconstruction, detection

Segment Anything (SAM)

Future Work

- The prevailing "pretraining → downstream tasks" pattern naturally offers the potential to perform zero-shot pruning
- More tasks: segmentation, reconstruction, generation
- More architectures: diffusion models

