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The Era of Artificial Intelligence
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Text to text: Text/Image to image: Text to speech:
ChatGPT, Bard, Jasper ... DALL-E, DeepAl, MidJourney ... VITS, Genny, Diffsinger...
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Challenge: Expensive Inference with Transformers

« Example: ChatGPT
* Inference: At least 8 Nvidia Tesla A100 GPUs needed (~$20,000/GPU)

« Electricity usage: $0.01-0.1 per query, $1-3 million in its first five days
when opened to public

We want to prune Transformers!

Estimated by Nathan Baschez @ Twitter



Transformer Pruning Methods
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Pruning Requires Re-Training

Most existing methods: expensive re-training D is required for each configuration

80% Laptop
r / Budget: 3.7 GFLOPs
X Z v
Pre-trained O p=60%
[ Model J I:> [ >< ] l |:> D Mobile phone

Budget: 2.8 GFLOPs
p=40%

Modify Architecture \ @ I:> @ IoT devices

Budget: 1.9 GFLOPs

Our method: pruning deployment is training-free and can switch between different conﬁguratlons at no computational cost

o p=80% |:| 4 Graph-based Pruning Layer \
BEREER /7 t1 Lz t3 Ly Q)

o' _ t
Pre-trained = p=60% 1
[ Model ] :> [ ] ' > ty =

- p=40% i3

J U U ‘.
Insert Pruning LaYers\ @

.JJ \_ Attention Map Directed Complete Graphj




Overview

« Our methodology the first to consider both importance and similarity of tokens
in performing token pruning
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Closer Look at the Transformer Block

- For each head, the attention probability between tokens: elements in matrix A%V
- A(MY. adjacency matrix of a complete, weighted, directed graph with hundreds of
nodes
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Utilize the information in this graph to select unimportant tokens (nodes)!



Weighted Page Rank (WPR) Algorithm

« Vanilla Page Rank algorithm: links between web pages unweighted

- Consider adjacency matrix A®D as a graph operator, and apply it to the uniformly
initialized graph signal iteratively until convergence
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Overview

« Our methodology the first to consider both importance and similarity of tokens
in performing token pruning
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Are Important Tokens Really Necessary?
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Once some important tokens are selected,
some other important tokens are no longer necessary!
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Importance-Guided Group Matching
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Visual Examples
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Comparison Experiment Setup

Pre-trained Transformer backbones:
« DeiT [1], MAE [2], AugReg [3], SWAG [4], LV-ViT[5], T2T-ViT[6]

Task: Image classification

Dataset: ImageNet, 224px images (if not specified)

Baselines:
* Fine-tuning required methods: DynamicViT [7], A-VIT [8]
« Off-the-shelf methods: ATS [9], ToMe [10]

[1] Touvron et al., ICML, 2021 [5] Jiang et al., NeurlPS, 2021 [9] Fayyaz et al., ECCV, 2022
[2] He et al., CVPR, 2022 [6] Yuan et al., ICCV, 2021 [10] Bolya et al., ICML, 2023
[3] Steiner et al., TMLR, 2022 [7]Rao et al., NeurlPS, 2021

[4] Singh et al., CVPR, 2022 [8] Yin et al., CVPR, 2022



Comparisons with Methods that Require Fine-tuning
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Comparisons with Off-the-shelf Methods: DeiT-S

« Compared to state-of-the-art, Zero-TPrune reduces accuracy
loss by 33%
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Method Acc@topl GFLOPS Throughput(img/s) <

DeiT-S 79.8% 4.55 1505.9 577

+ ATS 79.2% (-0.6%)  3.00 (-33.4%)  2062.3 (+36.9%) :

+ ToMe 78.9% (-0.9%)  2.95(-35.2%)  2263.9 (+50.3%) 87°
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Comparisons with Off-the-shelf Methods: Medium Models

Method Acc@topl GFLOPS | Method Acc@topl  GFLOPS
AugReg 81.41% 4.55 MAE 83.62% 55.4
+ ATS 79.21% 2.80 +ATS 82.07% 42.3
+ ToMe 79.30% 2.78 +ToMe 82.69% 42.2
+ Zero-TP  80.22% 2.79 +Zero-TP  82.93% 42.3
LV-ViT-S 83.3% 6.6 SWAG 85.30% 55.6
+ ATS 80.4% 3.5 +ATS 84.21% 43.8
+ ToMe 79.8% 3.6 +ToMe 85.09% 43.8
+ Zero-TP  81.5% 3.5 +Zero-TP  85.17% 43.8

* WAG models perform inference on 384px images



Conclusions

« Zero-TPrune: the first zero-shot token pruning method that exploits both the
importance and similarity of tokens

 Attention matrix — attention graph: Weighted Page Rank reduces noise from
unimportant tokens during importance assignment

« Guided by importance: similarity-based matching and pruning are more precise

« Zero-TPrune can increase the throughput of off-the-shelf pre-trained
Transformers by 45% with only 0.4% accuracy loss

« Compared with state-of-the-art methods, Zero-TPrune reduces accuracy loss
by more than 30%



Future Work

* The prevailing “pretraining — downstream tasks” pattern
naturally offers the potential to perform zero-shot pruning

* More tasks: segmentation, reconstruction, detection

Kirillov et al., arXiv, 2023
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Future Work

* The prevailing “pretraining — downstream tasks” pattern
naturally offers the potential to perform zero-shot pruning

* More tasks: segmentation, reconstruction, generation
» More architectures: diffusion models

SD-XL
@ 6.7 TFLOPs

AT-EDM
@ 4.1 TFLOPs




